TWO TYPES

- This valve is available with an extended body or an integrally-reinforced extended body (IREB).
- Extended body gate valves have a welded or threaded connection and are used for tapping of pressure vessels and header lines for vents, drains or takeoff lines and instrumentation.
- Also available: extended body assemblies for vents, drains, and instrument root valves.

EXTENDED BODY GATE VALVE DIMENSIONS AND WEIGHTS

<table>
<thead>
<tr>
<th>Size</th>
<th>A Port</th>
<th>B End to End</th>
<th>C Center to Top Closed</th>
<th>D Center to Top Open</th>
<th>H Handwheel</th>
<th>K Socket Weld Bore</th>
<th>DA Short End to Center</th>
<th>DB Long End to Center</th>
<th>Weight lb kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 - 1500</td>
<td>800</td>
<td>1500</td>
<td>800</td>
<td>1500</td>
<td>800</td>
<td>1500</td>
<td>800 - 1500</td>
<td>800 - 1500</td>
<td>800 - 1500</td>
</tr>
<tr>
<td>1/2</td>
<td>0.50(1)</td>
<td>5.63</td>
<td>5.75</td>
<td>5.90</td>
<td>6.2</td>
<td>6.6</td>
<td>6.8</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>15</td>
<td>1.25</td>
<td>7.25</td>
<td>7.88</td>
<td>8.6</td>
<td>9.0</td>
<td>9.4</td>
<td>10.4</td>
<td>10.8</td>
<td>5.0</td>
</tr>
<tr>
<td>1</td>
<td>0.69</td>
<td>9.38</td>
<td>10.13</td>
<td>11.8</td>
<td>12.4</td>
<td>12.8</td>
<td>14.0</td>
<td>14.4</td>
<td>5.0</td>
</tr>
<tr>
<td>11/4</td>
<td>1.25</td>
<td>10.50</td>
<td>11.13</td>
<td>12.8</td>
<td>13.4</td>
<td>13.8</td>
<td>15.0</td>
<td>15.4</td>
<td>5.0</td>
</tr>
<tr>
<td>2</td>
<td>1.50</td>
<td>11.88</td>
<td>12.50</td>
<td>14.2</td>
<td>14.8</td>
<td>15.2</td>
<td>16.0</td>
<td>16.4</td>
<td>5.0</td>
</tr>
</tbody>
</table>

IREB GATE VALVE DIMENSIONS AND WEIGHTS

<table>
<thead>
<tr>
<th>Size</th>
<th>A Port</th>
<th>B End to End</th>
<th>C Center to Top Closed</th>
<th>D Center to Top Open</th>
<th>H Handwheel</th>
<th>K Socket Weld Bore</th>
<th>L Socket Weld Depth</th>
<th>DA Short End to Center</th>
<th>DB Long End to Center</th>
<th>Weight lb kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 - 1500</td>
<td>800</td>
<td>1500</td>
<td>800</td>
<td>1500</td>
<td>800</td>
<td>1500</td>
<td>800 - 1500</td>
<td>800 - 1500</td>
<td>800 - 1500</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>0.50(1)</td>
<td>8.63</td>
<td>8.88</td>
<td>9.0</td>
<td>9.2</td>
<td>9.4</td>
<td>9.6</td>
<td>9.8</td>
<td>10.0</td>
<td>0.855</td>
</tr>
<tr>
<td>15</td>
<td>1.25</td>
<td>10.50</td>
<td>11.13</td>
<td>11.8</td>
<td>12.4</td>
<td>12.8</td>
<td>13.2</td>
<td>13.4</td>
<td>4.0</td>
<td>1.915</td>
</tr>
<tr>
<td>1</td>
<td>0.69</td>
<td>9.98</td>
<td>10.63</td>
<td>11.3</td>
<td>11.9</td>
<td>12.3</td>
<td>12.5</td>
<td>12.9</td>
<td>5.0</td>
<td>2.175</td>
</tr>
<tr>
<td>11/4</td>
<td>1.25</td>
<td>11.98</td>
<td>12.63</td>
<td>13.3</td>
<td>13.9</td>
<td>14.3</td>
<td>14.5</td>
<td>14.9</td>
<td>6.0</td>
<td>2.50</td>
</tr>
<tr>
<td>2</td>
<td>1.50</td>
<td>13.38</td>
<td>14.03</td>
<td>14.7</td>
<td>15.3</td>
<td>15.7</td>
<td>15.9</td>
<td>16.3</td>
<td>6.0</td>
<td>2.85</td>
</tr>
</tbody>
</table>

(1) 0.36” (9 mm) seat for 1/2” NPT male end only. (2) Bolted bonnet also available.
FORGED STEEL GLOBE VALVES
CONVENTIONAL PORT, ¼ – 2" (8 – 50 mm)

BOLTED BONNET
2074B – Class 800
3074B – Class 1500

FLANGED BONNET
0074B – Class 150
1074B – Class 300
2074B – Class 600
3074B – Class 1500

WELDED BONNET
2074W – Class 800
3074W – Class 1500

PART
STANDARD MATERIALS
Body
A105N
Sheet (integral)
Stellite 6
Bonnet
A105N
Gasket
Gr. 304 (stainless and graphite)
Pack flange
A105
Disc
CA15 HT or Stellite 6
Stem
Gr. 410 (stainless)
Stem nut
Gr. 416 (stainless) or bronze
Gland
Gr. 416 (stainless)
Pack flange
Graphite
Gland bolt
Gr. B6
Gland nut
Gr. 2H
Cap screw
Gr. B7
Handwheel
Malleable iron
Handwheel lockwasher
Steel

Name plate
Aluminum

Available with live-loading, double packing and leak-off or bellows seal for emission-free service.

For other materials, trim and engineering data, see pages 21 – 25.

For Y-Pattern globe valves, see page 10.

Regular style globe valves are suitable for moderate throttling applications. As a general rule, an adequately sized globe valve (i.e., with pipe velocity between 15 to 25 ft/sec for water and 200 to 300 ft/sec for steam) should not be throttled below 35% of its maximum full open Cv capacity (approximately 20% of full stroke). Harsh throttling, below 35% of full Cv capacity, will require analysis by applications department to determine suitability under possible cavitation, flashing, noise and vibration.

Percentage of Lift (%)

Percentage of Cv (%)

Regular style globe valves are suitable for moderate throttling applications. As a general rule, an adequately sized globe valve (i.e., with pipe velocity between 15 to 25 ft/sec for water and 200 to 300 ft/sec for steam) should not be throttled below 35% of its maximum full open Cv capacity (approximately 20% of full stroke). Harsh throttling, below 35% of full Cv capacity, will require analysis by applications department to determine suitability under possible cavitation, flashing, noise and vibration.

Percentage of Lift (%)

Percentage of Cv (%)

Regular style globe valves are suitable for moderate throttling applications. As a general rule, an adequately sized globe valve (i.e., with pipe velocity between 15 to 25 ft/sec for water and 200 to 300 ft/sec for steam) should not be throttled below 35% of its maximum full open Cv capacity (approximately 20% of full stroke). Harsh throttling, below 35% of full Cv capacity, will require analysis by applications department to determine suitability under possible cavitation, flashing, noise and vibration.

Percentage of Lift (%)

Percentage of Cv (%)

Regular style globe valves are suitable for moderate throttling applications. As a general rule, an adequately sized globe valve (i.e., with pipe velocity between 15 to 25 ft/sec for water and 200 to 300 ft/sec for steam) should not be throttled below 35% of its maximum full open Cv capacity (approximately 20% of full stroke). Harsh throttling, below 35% of full Cv capacity, will require analysis by applications department to determine suitability under possible cavitation, flashing, noise and vibration.

Percentage of Lift (%)

Percentage of Cv (%)

Regular style globe valves are suitable for moderate throttling applications. As a general rule, an adequately sized globe valve (i.e., with pipe velocity between 15 to 25 ft/sec for water and 200 to 300 ft/sec for steam) should not be throttled below 35% of its maximum full open Cv capacity (approximately 20% of full stroke). Harsh throttling, below 35% of full Cv capacity, will require analysis by applications department to determine suitability under possible cavitation, flashing, noise and vibration.

Percentage of Lift (%)

Percentage of Cv (%)

Regular style globe valves are suitable for moderate throttling applications. As a general rule, an adequately sized globe valve (i.e., with pipe velocity between 15 to 25 ft/sec for water and 200 to 300 ft/sec for steam) should not be throttled below 35% of its maximum full open Cv capacity (approximately 20% of full stroke). Harsh throttling, below 35% of full Cv capacity, will require analysis by applications department to determine suitability under possible cavitation, flashing, noise and vibration.

Percentage of Lift (%)

Percentage of Cv (%)

Regular style globe valves are suitable for moderate throttling applications. As a general rule, an adequately sized globe valve (i.e., with pipe velocity between 15 to 25 ft/sec for water and 200 to 300 ft/sec for steam) should not be throttled below 35% of its maximum full open Cv capacity (approximately 20% of full stroke). Harsh throttling, below 35% of full Cv capacity, will require analysis by applications department to determine suitability under possible cavitation, flashing, noise and vibration.